抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

一方の笔记本

The only source of knowledge is experience.

很多定积分可以利用费曼积分法与复变函数的方法更便捷地进行计算。

\(I = \displaystyle \int_{-\infty}^{+\infty}\frac{\cos x}{1+x^2}dx\)

费曼积分法

\(y(a) = \displaystyle \int_{0}^{+\infty} \frac{\cos ax}{1+x^2}dx,a>0\),则\(I = 2y(1)\),并且有\(y(0) = \displaystyle\frac{\pi}{2}\)

\[y'(a) = \int_{0}^{+\infty}(\frac{\partial}{\partial a}\frac{\cos ax}{1+x^2})dx = -\frac{\pi}{2}+\int_{0}^{+\infty}\frac{\sin ax}{x(1+x^2)}dx \Rightarrow y'(0) = -\frac{\pi}{2}\]

\[y''(a) = \int_{0}^{+\infty}[\frac{\partial}{\partial a}\frac{\sin ax}{x(1+x^2)}]dx = y(a) \Rightarrow y(a) = C_1e^{a}+C_2e^{-a}\]

求解常数\(C_1\)\(C_2\),得到\(y(a) = \displaystyle \frac{\pi}{2}e^{-a}\),那么\(I = \displaystyle \frac{\pi}{e}\)

留数法

注意到\(I = \displaystyle \int_{-\infty}^{+\infty}\frac{\text{Re}(e^{ix})}{1+x^2}dx = \text{Re}(\int_{-\infty}^{+\infty}\frac{e^{ix}}{1+x^2}dx)\),那么有:

\[\int_{-\infty}^{+\infty}\frac{e^{ix}}{1+x^2}dx = 2\pi i \text{Res}[\frac{e^{ix}}{1+x^2},i]=\frac{\pi}{e} \Rightarrow I = \frac{\pi}{e}\]

评论