抱歉,您的浏览器无法访问本站
本页面需要浏览器支持(启用)JavaScript
了解详情 >

一方の笔记本

The only source of knowledge is experience.

这篇博客用于记录一些杂七杂八的数学题目以及相关的知识。

\(\displaystyle I= \lim_\limits{x \to 0}\frac{\ln^2(x+\sqrt{1+x^2})+e^{-x^2}-1}{x^4}\)

显然\(e^{-x^2}-1=-x^2+\displaystyle\frac{1}{2}x^4+o(x^4), x\to0\),下面将对数函数部分展开。

\[x+\sqrt{1+x^2}=1+x+\frac{1}{2}x^2-\frac{1}{8}x^4+o(x^4)\]

那么有:

\[\ln(x+\sqrt{1+x^2}) = u-\frac{1}{2}u^2+\frac{1}{3}u^3+o(x^3), u=x+\frac{1}{2}x^2-\frac{1}{8}x^4+o(x^4)\]

上式中将对数展开得到\(x^2\)项的系数即可,整理得到:

\[\ln(x+\sqrt{1+x^2}) = x - \frac{1}{6}x^3+o(x^3)\]

最终有:

\[I= \lim_\limits{x \to 0}\frac{(x - \frac{1}{6}x^3+o(x^3))^2-x^2+\displaystyle\frac{1}{2}x^4+o(x^4)}{x^4}=\frac{1}{6}\]

\(I = \displaystyle \int \sum_{n=0}^ {_\infty}(n+3)(n+1)x^ndx\)

\(S(x) = \displaystyle\sum_{n=0}^ {_\infty}(n+3)(n+1)x^n\),易得函数的收敛域为\((-1,1)\),并且有:

\[S(x) = \sum_{n=0}^ {_\infty}(n+2)(n+1)x^n + \sum_{n=0}^ {_\infty}(n+1)x^n\]

接下来有:

\[\int_{0}^{x}S(t)dt = \sum_{n=0}^ {_\infty}(n+2)x^{n+1} + \sum_{n=0}^ {_\infty}x^{n+1}=(\frac{x^2}{1-x})'+\frac{x}{1-x}=\frac{x(3-2x)}{(1-x)^2}\]

最终\(I=\displaystyle \frac{x(3-2x)}{(1-x)^2} + C\)

\(\displaystyle \lim_\limits{x\to 0}\frac{n!x^n-\prod_{t=1}^n\sin tx}{x^{n+2}}\)

Taylor 展开

不妨对\(\displaystyle \prod_{t=1}^n\sin tx\)进行 Taylor 展开,不难发现该函数展开式中\(x\)的次数为\(n,n+2,\cdots\),其中\(x^n\)的系数显然是\(n!\),考虑\(\sin x =\displaystyle x - \frac{x^3}{6} + o(x^3)\),通过观察易得:

\[\prod_{t=1}^n\sin tx=n!x^n-\frac{n!}{6}\sum_{t=1}^nt^2=\frac{n!}{6}\frac{n(n+1)(2n+1)}{6} + o(x^{n+2})\]

最终求得\(I = \displaystyle\frac{n!}{6}\frac{n(n+1)(2n+1)}{6}\)

巧妙的等价无穷小代换

\[I = n!\lim_\limits{x\to 0}\frac{1-\prod_{t=1}^{n}\frac{\sin tx}{tx}}{x^2} = -n!\lim_\limits{x \to 0}\frac{\ln\prod_{t=1}^{n}\frac{\sin tx}{tx}}{x^2}=-n!\lim_\limits{x\to 0}\frac{\sum_{t=1}^{n}\frac{\sin tx}{tx}}{x^2} \]

\[ = -n!\sum_{t=1}^n \lim_\limits{x\to 0} \frac{\frac{\sin tx}{tx} - 1}{x^2}=\frac{n!}{6}\sum_{t=1}^nt^2=\frac{n!}{6}\frac{n(n+1)(2n+1)}{6}\]

利用有理数运算估计根式的值

以估算\(\sqrt{2}\)为例,很容易发现\(\displaystyle \frac{7}{5}<\sqrt{2}<\frac{3}{2}\),那么:

\[\frac{2}{5}<\sqrt{2} - 1<\frac{1}{2} \Rightarrow \frac{4}{25}<3-2\sqrt{2}<\frac{1}{4}\Rightarrow \frac{11}{8} < \sqrt{2}<\frac{71}{50}\]

\[\frac{3}{8} < \sqrt{2} - 1<\frac{21}{50} \Rightarrow \frac{9}{64} < 3-2\sqrt{2}<\frac{441}{2500}\Rightarrow \frac{7059}{5000}< \sqrt{2} < \frac{183}{128}\]

\[\cdots\]

以上方法收敛速度很快且计算方便,非常适合手算一定精度的根式近似值。

待定系数法的本质

数域\(P\)上的\(n\)次多项式全体\(P[x]_n\)\(P\)上的线性空间,\(1,x,\cdots, x^n\)是一组基,\(P[x_n]\)中的任何一个向量\(f(x)\)均可由这组线性无关的基线性表出,即:

\[f(x)=a_0+a_1x+\cdots+a_nx^n\]

\(f(x)\)还有另外一种表达方式,即\(f(x)=b_0+b_1x+\cdots+b_nx^n\),那么:

\[(a_0-b_0)+(a_1-b_1)x+\cdots +(a_n-b_n)x^n=0\]

由于\(1,x,\cdots, x^n\)线性无关,故\(a_i=b_i(i=0,1,\cdots,n)\)

\(I=\lim_\limits{x\to 0}\displaystyle \frac{1-\ln (\ln (x+e^{(1+x)^{\frac{1}{x}}}))}{x}\)

\[I=\lim_\limits{x\to 0}\displaystyle\frac{\ln \frac{e}{\ln (x+e^{(1+x)^{\frac{1}{x}}})}}{x}=\lim_\limits{x\to 0}\frac{\frac{e}{\ln (x+e^{(1+x)^{\frac{1}{x}}})}-1}{x}=\frac{1}{e}\lim_\limits{x\to 0}\frac{e-\ln (x+e^{(1+x)^{\frac{1}{x}}})}{x}=\frac{1}{e}\lim_\limits{x\to 0}\frac{\ln \frac{e^e}{x+e^{(1+x)^{\frac{1}{x}}}}}{x}=\frac{1}{e}\lim_\limits{x\to 0}\frac{ \frac{e^e}{x+e^{(1+x)^{\frac{1}{x}}}}-1}{x}\]

\[=\displaystyle\frac{1}{e^{e+1}}(\lim_\limits{x\to 0}\frac{e^e-e^{(1+x)^{\frac{1}{x}}}}{x}-1)\]

又:

\[\displaystyle \lim_\limits{x\to 0}\frac{e^e-e^{(1+x)^{\frac{1}{x}}}}{x} = e^e\lim_\limits{x\to 0}\frac{e-(1+x)^{\frac{1}{x}}}{x}=e^{e+1}\lim_\limits{x\to 0}\frac{1-\frac{1}{x}\ln(1+x)}{x}=\frac{1}{2}e^{e+1}\]

因此\(I=\displaystyle\frac{1}{2}-\frac{1}{e^{e+1}}\)

\(\displaystyle I = \lim_\limits{x\to 0}\frac{(x+e^x)^{\frac{1}{x}}-e^2+\frac{3}{2}e^2x}{x^2}\)

\(\displaystyle I = e^2\lim_\limits{x\to 0}\frac{e^{\frac{1}{x}\ln(x+e^x)-2}-1+\frac{3}{2}x}{x^2}\)

对指数部分进行泰勒展开有:

\[x+e^x=\displaystyle 1+2x+\frac{1}{2}x^2+\frac{1}{6}x^3+o(x^3)\]

进一步地:

\[\displaystyle \frac{1}{x}\ln(x+e^x)=\frac{1}{x}(2x+\frac{1}{2}x^2+\frac{1}{6}x^3+o(x^3))-\frac{1}{2x}(2x+\frac{1}{2}x^2+\frac{1}{6}x^3+o(x^3))^2+\frac{1}{3x}(2x+\frac{1}{2}x^2+\frac{1}{6}x^3+o(x^3))^3+o(x^2)\]

\(=\displaystyle 2 -\frac{3}{2}x+\frac{11}{6}x^2+o(x^2)\)

最终得到如下结果。

\(\displaystyle I=e^2\lim_\limits{x\to 0}\frac{\frac{11}{6}x^2+\frac{1}{2}(-\frac{3}{2}x+\frac{11}{6}x^2+o(x^2))^2+o(x^2)}{x^2}=\frac{71}{24}e^2\)

\(I=\displaystyle\lim_\limits{x\to0}\frac{1-\prod_{t=1}^n\cos tx}{x^2}\)

本题解法很多,泰勒展开、洛必达等等方法都可以,下面采用数列递推的方法。

\(a_n=\displaystyle\lim_\limits{x\to0}\frac{1-\prod_{t=1}^n\cos tx}{x^2}\),那么\(a_1=\displaystyle\frac{1}{2}\)\(n\geq 2\)时则有:

\[a_n=\displaystyle\lim_\limits{x\to0}\frac{1-\cos nx +\cos nx(1-\prod_{t=1}^{n-1}\cos tx)}{x^2}=\frac{1}{2}n^2+I_{n-1}\]

最终有\(a_n=\displaystyle\frac{1}{2}\frac{n(n+1)(2n+1)}{6}\)

\(I=\lim_\limits{x\to0}\displaystyle\frac{\ln^2(x+\sqrt{1+x^2})+e^{-x^2}-1}{x^4}\)

之前已经解过一次,现作另解。

如下积分的结果是显然的:

\[\displaystyle\int\frac{dx}{\sqrt{1+x^2}}=\ln(x+\sqrt{1+x^2})+C\]

\(x \to 0\)时有:

\(\displaystyle \frac{1}{\sqrt{1+x^2}}=(1+x^2)^{-\frac{1}{2}}=1-\frac{1}{2}x^2+\frac{3}{8}x^4+o(x^5)\)

那么\(\ln(x+\sqrt{1+x^2})\sim\displaystyle x-\frac{1}{6}x^3+\frac{3}{40}x^5+o(x^5)\),代入计算易得\(I=\displaystyle\frac{1}{6}\)

本题启示:积分公式要熟练,倒背如流。

\(I=\displaystyle\int_0^1\frac{\sin(\ln x)}{\ln x}dx\)

\[I\displaystyle \xlongequal{\ln x = t}\int_{-\infty}^{0}\frac{\sin t}{t}e^tdt\xlongequal{u=-t}\int_{0}^{+\infty}\frac{\sin u}{u}e^{-u}du=\int_{0}^{+\infty}\sum_{n=0}^{\infty}\frac{(-1)^nu^{2n}}{(2n+1)!}e^{-u}du\] \(=\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\int_{0}^{+\infty}u^{2n}e^{-u}du=\sum_{n=0}^{\infty}\frac{(-1)^n}{2n+1}=\frac{\pi}{4}\)

\(I=\displaystyle\int_{0}^{\frac{\pi}{2}}\frac{x}{\tan x}dx\)

\(I(a)=\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\arctan(a\tan x)}{\tan x}dx,a>0\),那么\(I(0)=0\)\(I=I(1)\)

\[I'(a)=\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{\partial }{\partial a}\frac{\arctan(a\tan x)}{\tan x}dx=\int_{0}^{\frac{\pi}{2}}\frac{1}{1+(a\tan x)^2}dx=\int_{0}^{\frac{\pi}{2}}\frac{\sec^2 x}{[1+(a\tan x)^2]\sec^2 x}dx\]

\(\displaystyle=\int_{0}^{\frac{\pi}{2}}\frac{d\tan x}{(1+a^2\tan^2 x)(1+\tan^2x)}\xlongequal{\tan x= t}\int_{0}^{+\infty}\frac{dt}{(1+a^2t^2)(1+t^2)}\)

\[\displaystyle\frac{1}{(1+a^2t^2)(1+t^2)}=\frac{\alpha}{1+a^2t^2}+\frac{\beta}{1+t^2}\Rightarrow \left\{ \begin{matrix}\alpha=\displaystyle \frac{a^2}{a^2-1} \\ \beta =\displaystyle -\frac{1}{a^2-1} \end{matrix}\right.\]

因此\(I'(a)=\displaystyle\frac{\pi}{2}\frac{1}{a+1}\Rightarrow I(a)=\frac{\pi}{2}\ln(a+1)+C\),并且\(I(0)=0\Rightarrow C=0\)

最终有:\(I=I(1)=\displaystyle\frac{\pi}{2}\ln 2\)

\(I=\displaystyle \int_{1}^{+\infty}(\frac{\ln x}{x})^{n}dx,n \in\text{N}\)

\[\displaystyle I \xlongequal{\ln x = t}\int_{0}^{+\infty}t^{n}e^{-(n-1)t}dt=\frac{n!}{(n-1)^{n}}\]

\(I=\displaystyle \int_{0}^{\frac{\pi}{2}}\frac{x}{\sin x}dx\)

卡特兰常数的定义为:

\[G=\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n+1)^2}\]

\[I\displaystyle =\int_{0}^{\frac{\pi}{2}}xd\ln \tan \frac{x}{2}=-\int_{0}^{\frac{\pi}{2}}\ln \tan \frac{x}{2}dx\xlongequal{t=-\ln \tan\frac{x}{2}}-2\int_{0}^{+\infty}td\arctan e^{-t}=2\int_{0}^{+\infty}\frac{\arctan e^{-t}}{e^t}de^t\]

\(\displaystyle\xlongequal{e^t=u}2\int_{1}^{+\infty}\frac{\arctan \frac{1}{u}}{u}du=2\sum_{n=0}^{\infty}\int_{1}^{+\infty}\frac{(-1)^n}{(2n+1)}x^{-(2n+2)}dx\xlongequal{t=\frac{1}{x}}2\sum_{n=0}^{\infty}\int_{0}^{1}\frac{(-1)^n}{(2n+1)}t^{2n}dt=2G\)

证明\(\displaystyle \frac{6}{\pi^2}=\prod_{p}(1-\frac{1}{p^2})\)

\[\displaystyle \frac{\pi^2}{6}=\frac{1}{1^2}+\frac{1}{2^2}+\cdots+\frac{1}{n^2}+\cdots\]

\[\displaystyle \frac{1}{2^2}\frac{\pi^2}{6}=\frac{1}{2^2}+\frac{1}{4^2}+\cdots+\frac{1}{(2n)^2}+\cdots\]

因此有:

\[\displaystyle (1-\frac{1}{2^2})\frac{\pi^2}{6}=\frac{1}{1^2}+\frac{1}{3^2}+\cdots+\frac{1}{(2n+1)^2}+\cdots\] 以此类推,从形式上可证明原式成立,思想类似于线性筛。

\(I=\lim_\limits{x\to 0}\displaystyle\frac{1-\prod_{t=1}^n\sqrt[t]{\cos tx}}{x^2}\)

\(I(n)=\lim_\limits{x\to 0}\displaystyle\frac{1-\prod_{t=1}^n\sqrt[t]{\cos tx}}{x^2}\),那么\(I(1)=\displaystyle\frac{1}{2}\)\(n\geq2\)时有:

\[I(n)-I(n-1)=\displaystyle\lim_\limits{x\to 0}\frac{\prod_{t=1}^{n-1}\sqrt[t]{\cos tx}-\prod_{t=1}^n\sqrt[t]{\cos tx}}{x^2}=\lim_\limits{x\to 0}\frac{1-\sqrt[n]{\cos nx}}{x^2}=\frac{1}{2}n\]

由递推关系易得\(I=I(n)=\displaystyle\frac{n(n+1)}{4}\)

\(I=\lim_\limits{x\to 0}\displaystyle\frac{e^{(1+x)^\frac{1}{x}}-(1+x)^{\frac{e}{x}}}{x^2}\)

暴力泰勒展开

\(\displaystyle(1+x)^{\frac{1}{x}}=e^{\frac{1}{x}\ln(1+x)}=e\cdot e^{\frac{1}{x}\ln(1+x)-1}\)

\(\displaystyle \frac{\ln(1+x)}{x}-1=-\frac{x}{2}+\frac{x^2}{3}+o(x^2)\)

\((1+x)^{\frac{1}{x}}=\displaystyle e[1+(-\frac{x}{2}+\frac{x^2}{3}+o(x^2))+\frac{1}{2}(-\frac{x}{2}+\frac{x^2}{3}+o(x^2))^2+o(x^2)]=e(1-\frac{x}{2}+\frac{11}{24}x^2)+o(x^2), x\to 0\)

\(\displaystyle e^{(1+x)^{\frac{1}{x}}}=e^e\cdot \exp[(-\frac{e}{2}x+\frac{11e}{24}x^2)+o(x^2)]=e^e[1+((-\frac{e}{2}x+\frac{11e}{24}x^2)+o(x^2))+\frac{1}{2}((-\frac{e}{2}x+\frac{11e}{24}x^2)+o(x^2))^2+o(x^2)]=e^e[1-\frac{e}{2}x+(\frac{e^2}{8}+\frac{11e}{24})x^2]+o(x^2)\)

\(((1+x)^{\frac{1}{x}})^e=\displaystyle e^e\cdot(1-\frac{1}{2}x+\frac{11}{24}x^2+o(x^2))^e=e^e[1-\frac{e}{2}x+\frac{11e}{24}x^2+\frac{e(e-1)}{2}(-\frac{1}{2}x+\frac{11}{24}x^2)^2]+o(x^2)=e^e[1-\frac{e}{2}x+(\frac{e^2}{8}+\frac{e}{3})x^2]+o(x^2)\)

\(I\displaystyle =\frac{e^{e+1}}{8}\)

经典计算方法

todo

评论